Searching for determinants of self-similarity of HTTP traffic on a Web server

Alicja Dembczak, Grażyna Suchacka

Abstract


The paper concerns the investigation of statistical self-similarity of HTTP traffic on a Web server and factors that may affect it. The Hurst parameter was estimated using three various methods, a degree of Web traffic burstiness was determined by computing so-called burstiness parameters and then the correlation of the mean Hurst parameter with the burstiness parameters and other traffic features was examined.

Keywords


self-similarity; Hurst parameter; Web traffic burstiness; access log; Web server

Full Text:

PDF (Polski)

References


Domańska J., Domański A., Czachórski T.: A few investigations of Long-Range Dependence in network traffic. 29th International Symposium on Computer and Information Sciences. Information Sciences and Systems, part III, 2014, s. 137÷144.

Dymora P., Mazurek M, Strzałka, D.: Computer network traffic analysis with the use of statistical self-similarity factor. Annales UMCS Informatica AI, Vol. 13, No. 2, 2013, s. 69÷81.

Olejnik R.: Study of the character of APRS traffic in AX.25 network. 20th International Science Conference on Computer Networks (CN 2013), CCIS, Vol. 370, 2013, s. 31÷37.

Park C., Hernández-Campos F., Le L., Marron J. S., Park J., Pipiras V., Smith F. D., Smith R. L., Trovero M., Zhu Z.: Long-Range Dependence analysis of Internet traffic. Journal of Applied Statistics, Vol. 38, No. 7, 2011, s. 1407÷1433.

Arlitt M., Williamson C.: Web server workload characterization: The search for invariants. ACM SIGMETRICS Performance Evaluation Review, Vol. 24, No. 1, 1996, s. 126÷137.

Crovella M., Bestavros A.: Self-similarity in World Wide Web traffic: Evidence and possible causes. IEEE/ACM Transactions on Networking, Vol. 5, No. 6, 1997, s. 835÷846.

Suchacka G., Dembczak A.: Verification of Web traffic burstiness and self-similarity for multiple online stores. Advances in Intelligent Systems and Computing (AISC), Vol. 655, ISAT 2017, 2018, s. 305÷314.

Vallamsetty U., Kant K., Mohapatra P.: Characterization of e-commerce traffic. Electronic Commerce Research, Vol. 3, No. 1, 2003, s. 167÷192.

Xia C. H., Liu Z., Squillante M. S., Zhang L., Malouch N.: Web traffic modeling at finer time scales and performance implications. Performance Evaluation, Vol. 61, No. 2-3, 2005, s. 181÷201.

Hernandez-Orallo E., Vila-Carbo J.: Analysis of self-similar workload on real-time systems. 16th IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS'10), 2010, s. 343÷352.

Kant K., Venkatachalam M.: Transactional characterization of front-end e-commerce traffic. IEEE Global Telecommunications Conference (GLOBECOM'02), Vol. 3, 2002, s. 2523÷2527.

Domańska J, Domański A., Czachórski T.: Estimating the intensity of Long-Range Dependence in real and synthetic traffic traces. 22nd International Science Conference on Computer Networks (CN 2015), CCIS, Vol. 522, 2015, s. 11÷22.

Lu X., Yin J., Chen H., Zhao X.: An approach for bursty and self-similar workload generation. LNCS, Vol. 8181, 2013, s. 347÷360.

Dembczak A.: Badanie samopodobieństwa danych z użyciem wybranego środowiska statystycznego. Praca magisterska, Wydział Matematyki, Fizyki i Informatyki, Uniwersytet Opolski, 2018.

Domańska J.: Markowowskie modele natężenia przesyłów internetowych. Instytut Informatyki Teoretycznej i Stosowanej Polskiej Akademii Nauk, Gliwice 2014.

Clegg R. G.: A practical guide to measuring the Hurst parameter. International Journal of Simulation: Systems, Science and Technology, Vol. 7, No. 2, 2006, s. 3÷14.

Sanchez-Ortiz W., Andrade-Gómez C., Hernandez-Martinez E., Puebla H.: Multifractal Hurst analysis for identification of corrosion type in AISI 304 stainless steel. International Journal of Electrochemical Science, Vol. 10, 2015, s. 1054÷1064.

Krištoufek L.: Rescaled Range Analysis and Detrended Fluctuation Analysis: Finite sample properties and confidence intervals. AUCO Czech Economic Review, Vol. 4, 2010, s. 315÷329.

Cano J. C., Manzoni P.: On the use and calculation of the Hurst parameter with MPEG videos data traffic. 26th Euromicro Conference, Vol. 1, 2000, s. 448÷455.

Suchacka G., Domański A.: Investigating long-range dependence in e-commerce Web traffic. 23rd International Science Conference on Computer Networks (CN 2016), Communications in Computer and Information Science (CCIS), Vol. 608, 2016, s. 42÷51.

Nowak-Brzezinska A.: Analiza regresji - część III. Materiały do przedmiotu: Statystyczne metody analizy danych, http://zsi.tech.us.edu.pl/nowak/smad (data dostepu: 30.01.2018).

Clegg R. G.: The statistics of dynamic networks. A thesis submitted for the degree of Ph.D., University of York, Department of Mathematics, 2004.

Cackov N.: Wavelet-based estimation of Long-Range Dependence in video and network traffic traces. Dipl. Ing., SS. Cyril and Methodius University, Skopje, Macedonia, 2001.

Menascé D. A., Almeida V.: Capacity planning for Web services: Metrics, models and methods. Prentice Hall PTR, Upper Saddle River 2001.

Adnan M., Nagi M., Kianmehr K., Tahboub R., Ridley M., Rokne J.: Promoting where, when and what? An analysis of Web logs by integrating data mining and social network techniques to guide ecommerce business promotions. Social Network Analysis and Mining , Vol. 1, No. 3, 2011, s. 173÷185.

Catledge L. D., Pitkow J. E.: Characterizing browsing strategies in the World-Wide Web. Computer Networks and ISDN Systems, Vol. 27, No. 6, 1995, s. 1065÷1073.

Chen Z., Fu A. W.-C., Tong F. C.-H.: Optimal algorithms for finding user access sessions from very large Web logs. World Wide Web, Vol. 6, 2004, s. 259÷279.

Stevanovic D., Vlajic N., An A.: Unsupervised clustering of Web sessions to detect malicious and non-malicious website users. Procedia Computer Science, Vol. 5, 2011, s. 123÷131.

Suchacka G., Motyka I.: Efficiency analysis of resource request patterns in classification of Web robots and humans. 32nd European Conference on Modelling and Simulation (ECMS'18), 2018, s. 475÷481.

Biecek P.: Przewodnik po pakiecie R. Oficyna Wydawcza GIS, Wrocław 2008.