UDP/IP/Ethernet Network as an Integration Layer for Distributed Avionic Application: a Case Study

Sławomir Samolej, Tomasz Rogalski

Abstract


The paper discusses an application of standard UDP/ IP/Ethernet local area network as a communication layer for real-time distributed avionic application. The main objective of the paper is to propose and discuss hardware/software network configurations which improve the control device's data exchange even if the network must conduct another data intensive stream services.

Keywords


IEEE 802.3; LAN; Real-Time Systems; UDP/IP; Avionics; Unmanned Aerial Vehicles

Full Text:

PDF

References


ARINC Specification 429 Part 1-17: Mark 33 Digital Information Transfer System DITS. 1996.

Wiki on CAN technology and products, http://www.can-wiki.info/doku.php

CAN Aerospace, Interface specification for airborne CAN applications V 1.7, http://www.canaerospace.net/tl_files/downloads/canaerospace/canas_17.pdf

ARINC 825, General Standardization of CAN (Controller Area Network) Bus Protocol For Airborne Use. 2015.

IEEE 802.3 Ethernet Working Group, http://www.ieee802.org/3/

Aircraft Data Network Part 7 – Avionics Full Duplex Switched Ethernet AFDX Network. ARINC Specification 664p7, 2005.

Time-Triggered Ethernet, Certifiable Ethernet Solution for Fault-Tolerant Systems, https://www.tttech.com/technologies/deterministic-ethernet/time-triggered-ethernet/

Samolej S., Rogalski T., Kopecki G., Tomczyk A.: The Integration of a Prototype Pitch Control Application with IMA2G Devices. Automatyka/Automatics, Uczelniane Wydawnictwa Naukowo-Dydaktyczne, Akademia Górniczo-Hutnicza w Krakowie, Vol. 17, No. 1, 2013, pp. 93÷102.

Samolej S., Rogalski T.: Experimental Real-Time Arinc 653 Based Pitch Angle Control Application, [in:] Kosiuczenko P., Śmiałek M.: From Requirements do Software: Research and Practice. Polish Information Processing Society, Warszawa 2015, pp. 139÷153.

Rogalski T., Samolej S., Tomczyk A.: ARINC 653 Based Time-Critical Application for European SCARLETT Project. AIAA Guidance, Navigation, and Control Conference, USA, Oregon, Portland, August 2011, paper number: AIAA 2011-6684, available on: www.aiaa.org

Nowak D., Rogalski T., Wałek T.: System LOT jako latające laboratorium. Technika Transportu Szynowego, nr 12/2015, pp. 1122÷1126.

MP-02 Czajka ultralighr aicraft producer website, http://www.mp-02.pl/

Burns A., Wellings A.: Real-Time Systems and Programming Languages: Ada, Real-Time Java and C/Real-Time POSIX. 4th Edition, Addison-Wesley, 2009.

Buttazzo G.C.: Hard Real-Time Computing Systems, Predictable Scheduling Algorithms and Applications. 3rd Edition, Springer Science+Business Media, 2011.

Pop P., Eles P., Zebo P.: Analysis and Synthesis of Distributed Real-Time Embedded Systems. Kluwer Academic Publishers, 2004.

Donahoo M.P., Calvert K.L.: TCP/IP Sockets in C, Practical Guide for Programmers. Elsevier, 2001.

STANAG 4586, 3rd Edition, Standard Interfaces of UAV Control System (UCS) for NATO UAV Interoperability, NSA/1235(2012) 4586, 2012.

Southworth M.: Choosing a Rugged Ethernet Switch/Router Solution. Technology White Paper, Curtiss-Wright Defense Solutions, 2015.

Hucaby D., McQuerry S.: Cisco Field Manual: Catalyst Switch Configuration. Cisco Press, 2002.

IEEE 802.3q – IEEE Standards for Local and metropolitan area networks – Virtual Bridged Local Area Networks, 2003.

Carrell J.L., Chappell L., Tittel E., Pyles J.: Guide to TCP/IP. Course Technology Press, 2012.

Tanenbaum A.S., Wetherall D.J.: Computer Networks. 5th Edition, Prentice Hall, 2010.

Miniature Ethernet Switches Deployed Onboard Unmanned Aircraft Systems. CASE STUDY, Curtiss-Wright, 2015.




DOI: http://dx.doi.org/10.21936/si2018_v39.n1.838