Flying Ant Colony Optimization Algorithm for Combinatorial Optimization

Stefka Fidanova, Krassimir Atanassov


In this paper is introduce "flying" ants in Ant Colony Optimization (ACO). In traditional ACO algorithms the ants construct their solution regarding one step forward. In proposed ACO algorithm, the ants make their decision, regarding more than one step forward, but they include only one new element in their solutions.


Evolutionary computation; Ant colony optimization; Combinatorial optimization

Full Text:



Fidanova S., Lirkov I.: 3D Protein Structure Prediction. Analele Universitatii de Vest Timisoara XLVII, 2009, p. 33÷46.

Fidanova S.: An Improvement of the Grid-based Hydrophobic-Hydrophilic Model. Int. J. Bioautomation 14, 2010, p. 147÷156.

Stutzle T., Hoos H.: Max Min Ant System. Future Generation Computer Systems 16, 2000, p. 889÷914.

Eiben A.E., Hinterding R., Michalewicz Z.: Parameter Control in Evolutionary Algorithms. IEEE Transactions on Evolutionary Computation 3, 1999, p. 121÷141.

Nowotniak R., Kucharski J.: Gpu-based Tuning of Quantum-inspired Genetic Algorithm for a Combinatorial Optimization Problem. Bulletin Of The Polish Academy Of Sciences Technical Sciences, 60, 2011, p. 323÷330.

Fidanova S.: Simulated Annealing: A Monte Carlo Method for GPS Surveying. Computational Science, Lecture Notes in Computer Science 3991, 2006, p. 1009÷1012.

Birattari M., Stutzle T., Paquete L., Varrentrapp K.: A Racing Algorithm for Configuring metaheuristics. Proceedings of the Genetic and Evolutionary Computation Conference, 2002, p. 11÷18.

Bonabeau E., Dorigo M.: Theraulaz G.: Swarm Intelligence: From Natural to Artifcial Systems. Oxford University Press, New York 1999.

Dorigo M., Stutzle T.: Ant Colony Optimization. MIT Press, 2004.

Dorigo M., Gambardella L.: Ant Colony system: A Cooperative Learning Approach to the Traveling Salesman Problem. IEEE Transactions on Evolutionary Computation 1, 1997, p. 53÷66.

Fidanova S.: ACO Algorithm with Additional Reinforcement. Int Conf. from Ant Colonies to Artifcial Ants, Lecture Notes in Computer Science 2463, 2003, p. 292÷293.

Fidanova S., Atanassov K., Marinov P.: Generalized Nets and Ant Colony Optimization. Bulg. Academy of Sciences Pub. House, 2011.

Fidanova S., Atanassov K., Marinov P.: Start Strategies of ACO Applied on Subset Problems. Numerical Methods and Applications, Lecture Notes in Computer Science 6046, 2011, p. 248÷255.

Fidanova S., Atanassov K., Marinov P.: Intuitionistic Fuzzy Estimation of the Ant Colony Optimization Starting Points. Large Scale Scientic Computing, Lecture Notes in Computer Science 7116, 2012, p. 219÷226.

Hofmann-Wellenhof B., Lichtenegger H., Collins J.: Global Positioning System: Theory and Practice. Springer, 1993.

Liberti L., Lavor C., Maculan N., Mucherino A.: Euclidean Distance Geometry and Applications. SIAM Review 56, 2014, p. 3÷69.

Leick A.: GPS Satellite Surveying. Wirley, 2004.

Dare P., Saleh H.: GPS Network Design: Logistics Solution Using Optimal and Near-Optimal Methods. Journal of Geodesy 74, 2000, p. 467÷478.

Saleh H., Dare P.: Effective Heuristics for the GPS Survey Network of Malta: Simulated Annealing and Tabu Search Techniques. Journal of Heuristics 7, 2001, p. 533÷549.

Teunissen P., Kleusberg A.: GPS for Geodesy. Springer, 1998.

Leguizamon G., Michalevich Z.: A New Version of Ant System for Subset Problems. Int. Conf. on Evolutionary Computations 2, 1999, p. 1459÷1464.

Kochenberger G., McCarl G., Wymann F.: An Heuristic for General Integer Programming. Decision Sciences 5, 1974, p. 34÷44.