GPS and ultrasonic distance sensors for Autonomous Mobile Platform

Wojciech Czernek, Wojciech Margas, Roman Wyżgolik, Sebastian Budzan, Adam Ziębiński, Rafał Cupek

Abstract


The real time processing of sensors signal and real time response of control system is crucial for autonomous mobile platforms. One of the assumption in the project, which part is presented in this article, was the cost of the sensor and control system. That’s the reason, that Raspberry Pi platform has been chosen for this purpose. The article describes connection and performance testing performed on two different GPS and ultrasonic distance sensors, which are the part of Autonomous Mobile Platform in the AutoUniMo project. The results shows, that the URM37 V3.2 ultrasonic distance sensor is very reliable device with almost non-existent error in whole measuring range. While the much cheaper HC-SR04 is very easy to implement, thanks to its simple mode of operation but offers less accurate measurements. In case of GPS sensors, the GY-GPS6MV2 has proven to be more accurate than Digilent PmodGPS, so it will be chosen as main GPS sensor for the mobile platform.

Keywords


GPS sensor; Ultrasonic distance sensor; AutoUniMo

Full Text:

PDF

References


Hanke T., Hirsenkorn N., Dehlink B., Rauch A., Rasshofer R., Biebl E.: Generic Architecture for Simulation of ADAS Sensors. Proc. of 16th International Radar Symposium (IRS), 2015, p. 125÷130.

Gruyer D., Belaroussi R., Li X., Lusetti B., Revilloud M., Glaser S.: PerSEE, A central sensors fusion electronic control unit for the development of perception-based ADAS. Proc. of 14th IAPR International Conference on Machine Vision Applications (MVA), May 18-22, 2015. Miraikan, Tokyo, Japan, p. 250÷254.

Xin J., Zhencheng H., Hsin G.: A new multi-sensor platform for adaptive driving assistance system (ADAS). Proc. of 8th World Congress on Intelligent Control and Automation, June 21-25, 2011, Taipei, Taiwan, p. 1224÷1230.

Ziebinski A., Cupek R., Erdogan H., Waechter S.: A Survey of ADAS Technologies for the Future Perspective of Sensor Fusion, in Computational Collective Intelligence: 8th International Conference, ICCCI 2016, Halkidiki, Greece, September 28-30, 2016. Proceedings, Part II, Nguyen T. N., Iliadis L., Manolopoulos Y., Trawiński B. (Eds.). Springer International Publishing, 2016, p. 135÷146.

Ogle J., Guensler R., Bachman W., Koutsak M., Wolf J.: Accuracy of global positioning system for determining driver performance parameters. Transp. Res. Rec.: J. Transp. Res. Board, 1818 (-1) (2002), p. 12÷24.

Porter M., Whitton M., Kriellaars D.: Assessing driving with the global positioning system: effect of differential correction. Transp. Res. Rec.: J. Transp. Res. Board, 1899 (-1) (2004), p. 19÷26.

Trinklein E., Parker G.: Combining multiple GPS receivers to enhance relative distance measurements. Sensors Applications Symposium (SAS) 2013, p. 33÷37.

PmodGPS reference manual, Digilent inc., 2012, available online (access: 27.05.2016): https://reference.digilentinc.com/_media/pmod:pmod:pmodgps_rm.pdf

NEO-6 u-blox 6 GPS Modules Datasheet, (access: 18.08.2016): https://u-box.com

Ultrasonic Ranging Module HC – SR04 datasheet, available online (access: 27.05.2016): http://www.micropik.com/PDF/HCSR04.pdf

URM37 V3.2 Ultrasonic Sensor datasheet, available online (access: 27.05.2016): http://www.dfrobot.com/wiki/index.php/URM37_V3.2_Ultrasonic_Sensor_(SKU:SEN0001)

Baddeley G.: GPS - NMEA sentence information, 2001, available online (access: 27.05.2016): http://aprs.gids.nl/nmea




DOI: http://dx.doi.org/10.21936/si2016_v37.n4A.786