Orthopedic pre-surgical planning using a 3D printed model

Stanisław Wideł, Agnieszka Szczęsna, Anrzej Wideł, Dominik Spinczyk

Abstract


Traditionally, pre-planned orthopedic surgery is based on a patient’s CT and MRI images of patients. While these images can illustrate a patient’s organ from different angles, they might not show all injuries that could cause possible complications. Besides, only visualizations with 3D models are not sufficient because they do not allow to fit and adjust necessary tools and components.
In the paper the pre-surgical planning with the use of a printed 3D bone model is presented. On the basis of this case all the stages of preparation and printing the 3D model have been described in detail. The potential benefits from the use of the 3D printing technology have been collected.

Keywords


3D printing; orthopedic pre-surgical planning; segmentation; 3D model pre-processing

Full Text:

PDF

References


Peters T., Cleary K.: Image-guided interventions: technology and applications. Springer, New York 2008.

Mishra S.: Application of 3D printing in medicine. Indian Heart Journal, vol. 68, 2016, p. 108÷109, 2016. DOI:10.1016/j.ihj.2016.01.009

Bizzotto N., Sandri A., Regis D., Romani D., Tami I., Magnan B.: Three-Dimensional Printing of Bone Fractures: A New Tangible Realistic Way for Preoperative Planning and Education. Surgical Innovation, vol. 22, 2015, p. 548÷551. DOI: 10.1177/1553350614547773.

Spottiswoode B., van den Heever D., Chang Y., Engelhardt S., Du Plessis S., Nicolls F., Hartzenberg H., Gretschel A.: Preoperative Three Dimensional Model Creation of Magnetic Resonance Brain Images as a Tool to Assist Neurosurgical Planning. Stereotactic and Functional Neurosurgery, vol. 91, 2013, p. 162÷169. DOI:10.1159/000345264.

Wiesel O., Jaklitsch M., Fisichella P.: Three-dimensional printing models in surgery. Surgery 2016. DOI:10.1016/j.surg.2016.01.002.

Piętka E.: Zintegrowany system informacyjny w pracy szpitala. Wydawnictwo Naukowe PWN, Warszawa 2004.

Haak D., Page C., Deserno T.: A Survey of DICOM Viewer Software to Integrate Clinical Research and Medical Imaging. Journal of Digital Imaging, vol. 29, 2016, p. 206÷215. DOI: 10.1007/s10278-015-9833-1.

Bergh B.: Enterprise imaging and multi-departmental PACS. European Radiology, vol. 16, 2016, p. 2775÷2791. DOI:10.1007/s00330-006-0352-9.

Aryanto K., Oudkerk M., van Ooijen P.: Free DICOM de-identification tools in clinical research: functioning and safety of patient privacy. European Radiology, vol. 25, 2015, p. 3685÷3695. DOI: 10.1007/s00330-015-3794-0.

Pianykh O.: Digital Imaging and Communications in Medicine (DICOM): A Practical Introduction and Survival Guide. Springer Science & Business Media 2009.

Neubauer T., Heurix J.: A methodology for the pseudonymization of medical data. Int J Med Inform, vol. 80, 2011, p. 190÷204. DOI: 10.1016/j.ijmedinf.2010.10.016.

Cheng G., Estepar R., Folch E., Onieva J., Gangadharan S., Majid A.: Three-dimensional Printing and 3D Slicer: Powerful Tools in Understanding and Treating Structural Lung Disease. Chest. vol. 149(5), 2016, p. 1136÷1142. DOI: 10.1016/j.chest.2016.03.001.

Lorensen W.; Cline H.: Marching cubes: A high resolution 3D surface construction algorithm. In: ACM siggraph computer graphics. ACM, 1987, p. 163÷169.

Guskov I., Sweldens W., Schroder P.: Multiresolution signal processing for meshes. In: Proceedings of the 26th annual conference on Computer graphics and interactive techniques. ACM Press/Addison-Wesley Publishing Co., 1999, p. 325÷334.

Stollnitz E., Derose T., Salesin D.: Wavelets for computer graphics: theory and applications, 1996

Vollmer J., Mencl R., Mueller H.: Improved laplacian smoothing of noisy surface meshes. In: Computer Graphics Forum. Blackwell Publishers Ltd, 1999, p. 131÷138.

Taubin G.: A signal processing approach to fair surface design. In: Proceedings of the 22nd annual conference on Computer graphics and interactive techniques. ACM, 1995, p. 351÷358.

Schroeder W., Zarge J., Lorensen W.: Decimation of triangle meshes. In: ACM Siggraph Computer Graphics. ACM, 1992, p. 65÷70.

Garland M., Heckbert P.. Surface simplification using quadric error metrics. In: Proceedings of the 24th annual conference on Computer graphics and interactive techniques. ACM Press/Addison-Wesley Publishing Co., p. 209-216, 1997.

Cignoni P., Montani C., Scopigno R.: A comparison of mesh simplification algorithms. Computers & Graphics vol. 22(1), 1998, p. 37÷54.

MeshLab, http://meshlab.sourceforge.net/

Cignoni P., et al.: Meshlab: an open-source mesh processing tool. In: Eurographics Italian Chapter Conference, 2008, p. 129÷36.

Bortolotto C., Eshja E., Peroni C., Orlandi M., Bizzotto N., Poggi P.: 3D Printing of CT Dataset: Validation of an Open Source and Consumer-Available Workflow. Journal of Digital Imaging vol. 29, 2016, p. 14÷21. DOI: 10.1007/s10278-015-9810-8




DOI: http://dx.doi.org/10.21936/si2016_v37.n3B.779