Automatic segmentation of fundus eye images using fuzzy clustering for supporting glaucoma diagnosing

Katarzyna Stąpor, Adrian Brückner


In this paper the new method for automatic segmentation of cup region from fundus eye images taken from classical fundus camera. The proposed method which is based on fuzzy clustering algorithm is a first step in automatic classification of fundus eye images into normal and glaucomatous ones.


image segmentation; fuzzy clustering; glaucoma

Full Text:



Bezdek J. C.: Pattern recognition with fuzzy objective function algorithms. Plenum Press, New York 1982.

Czogała E., Łęski J.: Fuzzy and neuro-fuzzy intelligent systems. Physica-Verlag, Heidelberg 2000.

Goh K. G., et al: ADRIS: an Automatic Diabetic Retinal Image Screening system. K. J. Cios (Ed.): Medical Data Mining and Knowledge Discovery, 181-210, Springer-Verlag New York, November 2000.

Gonzalez R. C., Woods: R. E. Digital image processing. Prentice-Hall, 2002.

Jain A., Dubes R. C.: Algorithms for clustering data. Prentice-Hall, 1988.

Kanski J. et al.: Glaucoma: a color manual of diagnosis and treatment. Butterworth-Heinemann, 1996.

Morris D. T., Donnison C.: Identifying the Neuroretinal Rim Boundary Using Dynamic Contours, Image and Vision Computing, v. 17, 1999, 169-174.

Pinz A., et al.: Mapping the human retina. IEEE Trans. Medical Imaging, v.1, 1998, 210-215.

Osareh A., et al.: Classification and localisation of diabetic related eye disease. A. Heyden et al. (Eds.): ECCV 2002, LNCS 2353, 2002, 502-516.