New method of modeling self-similar data traffic using Markov Modulated Poisson Process

Robert Wójcicki

Abstract


This paper describes a new method of modeling self-similar data traffic in computer networks using Markov Modulated Poisson Process (MMPP). This method matches both the autocovariance and distribution of the source process.

Keywords


Markov modulated Poisson process; MMPP; Poisson process; self-similarity; modelling; long-range dependence

Full Text:

PDF (Polski)

References


Czachórski T., Domańska J., Sochan A.: Samopodobny charakter natężenia ruchu w sie-ciach komputerowych. Studia Informatica Vol. 22, No. 1 (43), Gliwice 2001.

Czachórski T.: Modele kolejkowe w ocenie efektywności sieci i systemów komputero-wych. Pracownia Komputerowa Jacka Skalmierskiego, Gliwice 1999.

Willinger W., Leland W. E., Taq M. S., Wilson D.: On the self-similar nature of Ethernet traffic (extended version). IEEE/ACM Transactions on Networking, February 1994.

Papir Z.: Ruch telekomunikacyjny i przeciążenia sieci pakietowych. WKŁ, Warszawa 2001.

Grzech A.: Sterowanie ruchem w sieciach teleinformatycznych. Oficyna Wydawnicza Politechniki Wrocławskiej, Wrocław 2002.

Paxson V., Floyd S.: Wide area traffic: the failure of Poisson modeling. IEEE/ACM Transactions on Networking, 1995.

Fisher W., Meier-Hellstern K: The Markov-modulated Poisson process (MMPP) cookbook. Performance Evaluation 18, 1992.

Taqqu M. S.: Statistical methods for long-range dependence. Department of Mathematics, Boston University, http://math.bu.edu/people/murad/methods/index.html.

Salvador P., Valdas R., Pacheco A.: Multiscale Fitting Procedure Using Markov Modulated Poisson Process. Telecommunication Systems 23:1,2, 2003.

Czachórski T.: Analityczne modele kolejkowe w ocenie efektywności pracy systemów i sieci komputerowych. 3 Kongres Informatyki Polskiej, Poznań, 2003.

Cinlar E.: Introduction to Stochastic Processes. Prentice-Hall, Englewood Cliffs, New Jersey, USA, 1975.

Larson H. J., Shubert B. O.: Probabilistic Models in Engineering Sciences – Vol. I. New York 1979.

Larson H. J., Shubert B. O.: Probabilistic Models in Engineering Sciences – Vol. II. New York 1979.

Hajek B., He L.: On variations on queue response for inputs with the same mean, and autocorrelation function. IEEE/ACM Transactions on Networking 6(5), 1998.

Osborne M., Smyth G: A modified Prony algorithm for fitting sums of exponential functions. SIAM Journal of Scientific Computing 16, 1995




DOI: http://dx.doi.org/10.21936/si2005_v26.n2.588