### Phase space analaysis of frames traffic intensity in an Ethernet network

#### Abstract

#### Keywords

#### Full Text:

PDF (Polski)#### References

Abry P., Baraniuk R., Flandrin P., Riedi R., Veitch D.: Multiscale Nature of Network Traffic, Signal Processing Magazine, 2002.

Cao L.: Practical method for determining the minimum embedding dimension of a scalar time series, Physica D, 1997, pp. 43–50.

Casdagli M., Eubank S., Farmer J. D., Gibson J.: State space reconstruction in the pres-ence of noise, Physica D, No 51, 1991, pp. 52-98.

Dua A.: Modeling of Network Traffic. Technical Report. http://www.stanford.edu/~ dua/files/network_model.html

Endance Measurement Systems. http://www.endace.com.

Erramilli A., Broughan, M. Veitch D., Willinger W.: Selfsimilar traffic and network dy-namics, Proceedings of the IEEE, 2002.

Fekete A., Marodi M., Vattay G.: On the Prospects of Chaos Aware Traffic Modeling, ArXiv Condensed Matter e-prints, 2002.

Hegger R., Kantz H.: Practical implementation of nonlinear time series methods. The TISEAN software package, http://www.mpiipks-dresden.mpg.de/~tisean. Online docu-mentation, 1998.

Karagiannis T., Molle M., Faloutsos M, Broido A.: A Nonstationary Poisson View of Internet Traffic. IEEE INFOCOM, 2004.

Kennel M. B., Brown R., Abarbanel H.: Determining embedding dimension for phase-space reconstruction using a geometrical construction, Phys. Rev. A 45, 3403, 1992.

Leland W. E., Taqqu M. S., Willinger W., Wilson D. V.: On the Self- Similar Nature of Ethernet Traffic. ACM SIGComm, San Francisco, CA, USA, 1993.

National Laboratory For Applied Networking Research. Nlanr network analysis infrastructure. http://moat.nlanr.net. NLANR PMA and AMP datasets are provided by the National Laboratory for Applied Networking Research under NSF Cooperative Agreement ANI-9807579.

Pruthi P.: An Application of Chaotic Maps to Packet Traffic Modeling. Ph.D. Disserta-tion, Royal Institute of Technology, Stockholm 1995.

Rosenstein M. T., Collins J. J., DeLuca C. J.: Reconstruction expansion as a geometry-based framework for choosing proper delay times, Physica D, No 73, pp. 82-98.

Takens F.: Detecting Strange Attractors in Turbulence. Lecture Notes in Math., Vol. 898, Springer, 1981.

The Internet traffic archive, http://www.acm.org/sigcomm/ITA/, sponsored by ACM SIGCOMM.

The nonlinear time series analysis tool package TSTOOL and its documents, http://www.physik3.gwdg.de/tstool/index.html, 2001.

Veres A., Boda M.: The chaotic nature of TCP congestion control, Proc. IEEE INFOCOM 2000, pp. 1715–1723.

Zhang W. a.o: Chaotic Network Attractor in Packet Traffic Series. Comput. Phys. Com-mun, Vol. 161, No 3, 2004, pp.129-142

DOI: http://dx.doi.org/10.21936/si2005_v26.n3.584