NetTRS – web tool for data analysis by the rough sets theory

Marcin Michalak, Marek Sikora

Abstract


This paper presents internet system netTRS, which makes possible to analyse data, using TRS library and Internet browser. Until now, the library was accessible only as a local service with GUI. netTRS system makes it easier to use TRS library as a tool for induction and postprocessing of decision rules and can be developed in future.

Keywords


web application; decision rules; classification; rough sets

Full Text:

PDF (Polski)

References


Bazan J.: Metody wnioskowań aproksymacyjnych dla syntezy algorytmów decyzyjnych. Praca doktorska. Uniwersytet Warszawski. Wydział Matematyki, Informatyki i Mechaniki, 1998. Promotor prof, drhab. Andrzej Skowron.

Bruha L: Quality of Decision Rules: Definitions and Classification Schemes for Multiple Rules. Nakhaeizadeh G., Taylor C.C. (ed.), Machine Learning and Statistics, The Interface. John Wiley and Sons, 1997.

Bishop Y., Fienberg S., Holland P.: Discrete Multivariate Analysis: Theory and Practice. MIT Press, Cambridge, MA, 1991.

Grzymała-Busse J., Wang C. P.: Classification Methods in Rule Induction, Intelligent Information Systems. Proceedings of the Workshop held in Dęblin, Poland 2-5 June, 1996, pp. 120-126.

Goldberg D. E.: Algorytmy genetyczne i ich zastosowania. Wydawnictwo Naukowo-Techniczne, Warszawa 1998.

Nguyen H. S., Nguyen S. H.: Some efficient algorithms for rough set methods. Proceedings of the Sixth International Conference, Information Processing and Management of Uncertainty in Knowledge-Based Systems (IPMU'96) 2, July 1-5, Granada, Spain pp. 1451-1456.

Pawlak Z.: Rough sets: Theoretical aspects of reasoning about data. Dordrecht: Kluwer, 1991.

Sikora M.: Approximate decision rules induction algorithm using rough sets and rule-related quality measures. Archiwum Informatyki Teoretycznej i Stosowanej Nr 4, 2004.

Sikora M.: Filtracja zbioru reguł decyzyjnych wykorzystująca funkcje oceny jakości reguł. Studia Informatica Vol. 46, No.4, Gliwice 2001.

Sikora M.: An algorithm for generalization of decision rules by joining. Foundation on Computing and Decision Sciences, Vol. 30, No. 3, 2005.

Sikora M., Proksa P.: Algorithms for generation and filtration of approximate decision rules, using rule-related quality measures. Bulletin of International Rough Set Society Vo. 5, No. 1/2. Proceedings of the International Workshop on Rough Set Theory and Granular Computing (RSTGC-2001).

Sikora M., Proksa M.: Induction of decision and association rules for knowledge discovery in industrial databases. DM-IEEE, IEEE International Conference of Data Mining, Brighton, 01-04, November 2004.

Skowron A., Rauszer C: The Discernibility Matrices and Functions in Information systems. Słowiński R. (ed.): Intelligent Decision Support. Handbook of Applications and Advances of the Rough Sets Theory, Dordrecht, Kluwer, 1992, pp. 331-362.

Stefanowski J.: Rough set based rule induction techniques for classification problems. Proc. 6-th European Congress for Intelligent Techniques and Soft Computing, vol.1, Achen, Sept. 7-10, 1998, pp. 107-119.

Stepaniuk J.: Knowledge Discovery by Application of Rough Set Models. ICS PAS Reports No. 887, Warszawa, 1999.

Stepaniuk J., Krętowski M.: Decision System Based on Tolerance Rough Sets. Proceedings IIS 1995, June 5-9, Augustów, Poland, ICS Polish Academy of Sciences.




DOI: http://dx.doi.org/10.21936/si2006_v27.n1.576