Heuristic parametric optimization algorithm for multidimensional problems solving

Dariusz R Augustyn, Łukasz Wyciślik


Heuristic optimization algorithms are known from the beginnings of computer science but ones based on observations of nature phenomenons (evolution, food searching of multiagent colonies, annealing) were introduced relatively late. Each of them have different characteristics of search space exploration. One of known problems of parametric optimization is multidimensional case (hundreds or thousands of di­men­sions). Authors, inspired by best features of known optimization algorithms, proposed optimization method for such problems solving.


heuristic; optimization; evolution

Full Text:

PDF (Polski)


Arabas J.: Wykłady z algorytmów ewolucyjnych. WNT, Warszawa 2001.

Michalewicz Z.: Algorytmy genetyczne + struktury danych = programy ewolucyjne.WNT, Warszawa 2003.

Baluja S.: Population-based incremental learning: A metod for integrating genetics search based function optimization and competitive learning. Technical Report CMU-CS-94-163, Carnegie Mellon University, 1994.

Seidler J.:, Badach A., Molisz W.: Metody rozwiązywania zadań optymalizacji. WNT,Warszawa 1980.

DOI: http://dx.doi.org/10.21936/si2007_v28.n1.560