An application of partial least squares method (PLS) for classification of microarray data

Paweł Błaszczyk, Katarzyna Stąpor

Abstract


In this paper we present marthematical introduction of Partial Least Squares metod (PLS) and application for classification microarray data. To do this application two classification methods was compared – Fisher linear discrimi­nant (FLD) and partial Least Squares (PLS) applied to classification of microarray data are compared. The simulation and biological datasets are used as a microarray gene expression data.

Keywords


microarray data; PLS; Partial Least Square; discriminant; FLD; Fisher Linear Discriminant; partial square

Full Text:

PDF (Polski)

References


Bastien P., Yinzi V. E., Tenenhaus M.: PLS generalised linear regression. Computational Statistics & Data Analysis, 48 (2005), pp. 17-46.

Broberg P.: Statistical methods for ranking differentaially expressed genes. Genome Biology2003, $:R41.

Duda R. O., Hart P. E., Stork D. G.: Pattern classification 2ed. Wiley, New York 2000.

Dudoit S., Yang Y. H., Callow M. J., Speed T .P.: Statistical methods for identifymg differentially expressed genes in replicated cDNA microarray experiments. Technical Report 578, Department of Statistics, UC Berkeley, CA, 2000.

Efron B.: Estimating the error rate of prediction nile improvement on cross-validation. Journal of the American Statistical Association, 1983, Vol. 78, No. 382.

Fukunaga K.: Łitroduction to Statistical pattern recognition. Academic Press Professional, New York 1990.

Garthwaite P. H.: A interpretation of Partial Least Sąuares. Journal of the Amerian Statistical Association, March 1994, 89,425, ABI/INFORM Global, pp. 122.

Ge Y., Dudoit S., Speed T. P.: Resampling-based multiple testing for microarray data analysis. Technical Report 663, Department of Statistics, UC Berkeley, CA, 2003.

Geladi P., Kowalski B. R.: Partial Least-Sąuares Regression: A tutorial, Analytica Chemica Acta, 185 (1986), 1-17.

Helland I. S.: Partial Least Squares Regression and Statictical Models, Scand. J. Statist 17,1990, pp. 97-114.

Hoskuldsson A.: PLS Regression methods, Journal of Chemometrics. vol 2 (1988), pp. 211-228.

Hoskuldsson A.: Yariable and subset selection in PLS regression. Chemometrics and Intelligent labolatory Systems, 55 (2001), pp. 23-38.

Liu Z., Tian J. P., Chen D.: Cancer Classification with Partial Least Square Algorithm and Proteomic Data.

Liu Z., Chen D., Tian J. P.: Classification of Proteomic Data with Multiclass Logistic Partial Least Sqare Algorithm.

Marąues de Są J. P.: Pattern recognition. Concepts, methods, and applications, Springer,2001.

Nguyen D. V., Rocke D. M.: Tumor classidication by Partial Least Square using microarray gene expression data. Bioinformatics, Yol. 18, No. l, 2002, pp. 39-50.

Nguyen D. V., Rocke D. M., On Partial Least Square dimension reduction for microarray-based Classification: a simulation study. Computational Statistic & Data Analysis, 46, 004, pp. 407-425.

Rosipal R., Trejo L. J.: Kernel Partial Least Sąuare Regression in Reproducing Kernel Lilbert Space.

Sellin N., Yersand O.: Partial Least Sąuare Modeling in Research on Educational Achievement.

Wold H.: Soft Modeling by Latent Yariables: The Non-Linear Iterative Partial Least Squares (NIPALS) Approach, Perspectiyes in Probability and Statistics. Papers in Honour f M. S. Bartlett, London 1975, pp. 117-142

Wold S., Martens H., Wold H.: The multivariate calibration problem in chemistry solved y the PLS method. Proc. Conf. Matrix Pencils, (A. Ruhe and B. Kagstrom, eds.), March 982, Lecture Notes in Mathematics, Springer Yerlag, Heidelberg, pp. 286-93.

Wold S., Ruhe A., Wold H.: The collinearity problem in linear regession. The partial least ąuares (PLS) approach to generalized inverses. SIAM J. Sci. Stat. Comput. Yol. 5, No. 3,Septembre 1984.

Wold S., Sjostrom M., Eriksson L.: PLS-regression: a basic tool of Chemometrics, hemometrics and Intelligent labolatory Systems, 58,2001, pp. 109-130.

Yapnik V. N.: Statistical Learning Theory. Wiley, New York 1998.

Yapnik V. N.: The nature of statistical learning theory 2ed. Springer, 2000.

http://www.broad.mit.edu.

http://microarray.princeton.edu/oncology/affydata/index.html




DOI: http://dx.doi.org/10.21936/si2007_v28.n2.554