Statistical and data mining methods for survival analysis of electrical submersible pump systems

Marcin Gorawski, Jarosław Życiński

Abstract


Electrical submersible pump (ESP) systems are one of the more commonly used artificial lift methods that improve oil production from the well. This review of the literature describes survival analysis of ESP systems using statistical and data mining methodologies. Statistical analysis is based on the Kaplan-Meier estimator, while data mining utilizes a few traditional data mining algorithms.

Keywords


electrical submersible pumps (ESP); Kaplan-Meier estimator; data mining algorithms; survival analysis

Full Text:

PDF (Polski)

References


Kaplan E. L., Meier P.: Nonparametric estimation from incomplete observations. Journal of the American Statistical Association, Vol. 53, No. 282, 1958, s. 457-481.

Kantardzic M.,Data Mining: Concepts, Models, Methods, and Algorithms. John Wiley & Sons, 2003.

Harinath S., Quinn S. R.: Professional SQL Server Analysis Services 2005 with MDX, Wrox Press, 2006.

Brust A. J., Forte S.: Programming Microsoft SQL Server 2005. Microsoft Press, 2006.

Ville B.: Microsoft Data Mining: Integrated Business IntelHgence for e-Commerce and Knovledge Management, Digital Press, 2001.

Gorawski M.: Laboratorium hurtowni danych poziomu MS SQL SEVER 2005. Krajowa konferencja naukowa "Metody i narzędzia wytwarzania oprogramowania". Szklarska Poręba 2007, s. 583-596.

Motyka A., Tuzinkiewicz L.: Ocena implementacji algorytmów predykcji w Microsoft SQL Server 2005. Krajowa konferencja naukowa "Metody i narzędzia wytwarzania oprogramowania", Szklarska Poręba 2007, s. 3007^317.

Microsoft-Dokumentacja Microsoft SQL Server 2005.

Dokumentacja środowiska R - http://www.r-project.org/.

Schlumberger - broszura espWatcher, http://wvvw.slb.com/media/services/artificial/sub-mersible/espwatcher.pdf.




DOI: http://dx.doi.org/10.21936/si2008_v29.n1.537