Algorithm for precise frontal face detection

Michał Kawulok, Janusz Szymanek

Abstract


The paper presents an algorithm for frontal face detection. At first a set of face candidates is selected based on ellipse detection with the Hough transform. Subsequently, every candidate is verified and for positive verification the detection precision is improved, which is particularly important for face recognition purposes. Results of conducted experiments, which are discussed in the paper, confirm high speed and effectiveness of the algorithm.

Keywords


face detection; generalized Hough transform; Support Vector Machines

Full Text:

PDF

References


Ballard D. H.: Generalizing the Hough Transform to Detect Arbitrary Shapes. Pattern Recognition, 1981, Vol. 13(2), p. 111-122.

Belhumeur P. N., Hespanha J. P., Kriegman D. J.: Eigenfaces vs. Fisherfaces: recognition using class specific linear projection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1997, Vol. 19, p. 711-720.

Cortes C, Vapnik V.: Support-Vector Networks. Machine Learning, 1995, Vol. 20(3), p. 273-297.

Donahue M. J., Rokhlin S. I.: On the use of level curves in image analysis. Image Understanding, 1993, Vol. 57, p. 185-203.

Duda R. O, Hart P. E.: Pattern Classification and Scene Analysis. John Wiley, 1973.

Han C.-C, Liao H.-Y. M., Yu K.-C, Chen L.-H.: Fast Face Detection via Morphology-Based Pre-Processing, Proc. Ninth Int'l Conf. Image Analysis and Processing, 1998, p. 469-476.

Hsu R. L., Abdel-Mottaleb M., Jain A. K.: Face detection in color images. IEEE Trans, on Pattern Analysis and Machine Intelligence, 2002, Vol. 24(5), p. 696-706.

Jones M. J., Rehg J. M.: Statistical color models with application to skin detection. International Journal of Comp. Vision, 2002, Vol. 46(1), p. 81-96.

Maio D., Maltoni, D.: Fast face location in complex backgrounds. Face Recognition from Theory to Applications, Nato Asi Series, Springer-Verlag, 1997, p. 568-577.

Martinez A. M., Benavente R: The AR face database. Technical Report 24, CVC, 1998.

Osuna E., Freund R., Girosi, F.: Training Support Vector Machines: An Application to Face Detection. Proc. IEEE Conf. Comp. Vision and Pattern Recogn., 1997, p. 130-136.

Phillips P. J., Flynn P. J., Scruggs T., Bowyer K. W., Chang J., Hoffman K., Marques J., Min J., Worek W.: Overview of the Face Recognition Grand Challenge. In Proc. of IEEE Conference on Computer Vision and Pattern Recognition, 2005, Vol. 1, p. 947-954.

Phillips P. J., Wechsler H., Huang J., Rauss P.: The FERET database and evaluation procedure for face recognition algorithms. Image and Vision Computing J., 1998, Vol. 16(5), p. 295-306.

Rowley H., Balują S., Kanadę T.: Neural Network-Based Face Detection. Proc. IEEE Conf. Computer Vision and Pattern Recognition, 1996, p. 203-208.

Turk M., Pentland A.: Face Recognition Using Eigenfaces. In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, 1991, p. 586-591.

Yang G, Huang T. S.: Human Face Detection in Complex Background. Pattern Recognition, 1994, Vol. 27(1), p. 53-63.

Yang M.-H., Kriegman D. J., Ahuja N.: Detecting faces in images: A survey. IEEE Trans, on Pattern Analysis and Machine Intelligence, 2002, Vol. 24, p. 34-^58.

Zhao W., Chellappa R., Phillips P. J., Rosenfeld A.: Face recognition: A literature survey. Tech. Report CARTR-948, Center for Automation Research, University of Maryland, College Park, 2000.




DOI: http://dx.doi.org/10.21936/si2009_v30.n2A.496