Conglomeration algebra as a tool for describing ontology processing problems

Krzysztof Goczyła, Aleksander Waloszek, Wojciech Waloszek


In the paper we present a novel conglomeration algebra which is a basic tool in our approach to knowledge base modularization. In the algebra modules are treated semantically. The paper presents our experiences with using conglomeration algebra and sketch the directions of its further development.


ontology; knowledge base; modularity

Full Text:

PDF (Polski)


Baader F. A., McGuiness D. L., Nardi D., Patel-Schneider P. F. (red.): The Description Logic Handbook: Theory, implementation, and applications, Cambridge University Press, 2003.

Codd, E. F.: Relational Completeness of Data Base Sublanguages. Database Systems, 1979, Vol. 6, s. 65-98.

Serafini L., Tamilin A. Reasoning with Instances in Distributed Description Logics. Raport badawczy, Fondazione Bruno Kessler - IRST, 2007. Dostępny pod adresem:

Benerecetti, M., Bouquet, P., Ghidini, C: Contextual reasoning distilled. Journal of Experimental & Theoretical Artificial Intelligence, 2000, Vol. 12, No. 3, s. 279-305.

Cuenca-Grau B., Parsia B., Sirin E.: Tableau Algorithms for L-Connections of Description Logics. Raport badawczy UMIACS, Maryland, 2004.

Grau B. C, Horrocks I., Kazakov Y., Sattler U.: A logical framework for modularity of ontologies. Proceedings of the 20th International Joint Conference on Artificial Intelligence, s. 298-303, IJCAI, 2007.

Ghidini C, Serafini L., Tessaris S.: On relating heterogeneous elements from different ontologies. Proceedings of the 20th International Workshop of Description Logics, Bozen-Bolzano 2007, s. 283-290.

Motik, B., Sattler, U., Studer, R: Query Answering for OWL-DL with Rules. Journal of Web Semantics: Science, Services and Agents on the World Wide Web, 2005, Vol. 3, No. l,s. 41-60.

Horrocks, I., Sattler, U.: A Tableau Decision Procedure for SHOIQ. Journal of Automated Reasoning, 2007, Vol. 39, No. 3, s. 249-276.

Tobies, S.: Complexity Results and Practical Algorithms for Logics in Knowledge Representation. Praca doktorska, RWTH Aachen 2001.

Hall, P., Hitchcock, P., Todd, S.: An algebra of relations for machine computation. Proceedings of the 2nd ACM SIGACT-SIGPLAN symposium on Principles of programming languages, ACM, 1975, s. 225-232.

Herrmann C, Krahn H., Rumpe B., Schindler B., Volkel S.: An Algebraic View on the Semantics of Model Composition. Model Driven Architecture - Foundations and Applications, Springer, 2007, s. 99-113.

Bao J., Caragea D., Honavar V. G.: Modular Ontologies - A Formal Investigation of Semantics and Expressivity. Proceedings of the First Asian Semantic Web Conference, Springer-Verlag, 2006, s. 616-631.

Goczyła K., Waloszek A., Waloszek W.: Techniki modularyzacji ontologii. Bazy danych. Rozwój metod i technologii - Architektura, metody formalne i zaawansowana analiza danych, red.: S. Kozielski, B. Małysiak, P. Kasprowski, D. Mrozek, WKŁ, 2008, s. 309-322,.

Mitra P., Wiederhold G.: An Ontology-Composition Algebra. Handbook on Ontologies, Springer-Verlag, 2004, s. 171-216.

d'Aquin M. i in.: NeOn Formalisms for Modularization: Syntax, Semantics, Algebra. Raport D 1.1.3 projektu NeOn,, 2008.

Aho, A. V., Ullman, J. D.: Universality of data retrieval languages. Proceedings of the 6th ACM SIGACT-SIGPLAN symposium on Principles of programming languages, ACM, 1979, s. 110-119.

Colby, L. S.; A recursive algebra and query optimization for nested relations. SIGMOD Rec, 1989, Vol. 18, No. 2, s. 273-283.