Analysis of Internet resources due to the link structure

Anna Kotulla


This study discusses the possibilities of the analysis of the resources of the World Wide Web network due to the link structure. The most important ways, the searching for resources in the entire network and the searching for information in the query-depended part of the network, are presented. New application areas of the link structure analysis are indicated.


Web Mining; Web Structure Mining; link analysis

Full Text:

PDF (Polski)


Berners-Lee T.: Information Management: A Proposal. CERN, Genewa, 1989-199' URL:, (sprawdzono 14.01.2010).

Bharat K., Mihaila G. A.: Hilltop: A Search Engine based on Expert Documents. 9th International WWW Conference, 2000.

Brin S., Page L.: The Anatomy of a Large-Scale Hypertextual Web Search Engine. Computer Networks and ISDN Systems, 1998.

De Kunder M.: Daily estimated size of the World Wide Web, URL:, (sprawdzono 14.01.2010).

Feldman R., Dagan I.: Knowledge Discovery in Textual Databases (KDT). Proceedings of the First International Conference on Knowledge Discovery and Data Mining (KDD- 95), Montreal 1995, s. 112+117.

Feldman R., Sanger J.: The Text Mining Handbook. Advanced Approaches in Analyzing Unstructured Data. Cambridge University Press, 2007.

Gyöngyi Z., Garcia-Molina H., Pedersen J.: Combating Web Spam with TrustRank. Proceedings of the Thirtieth international conference on Very large data bases - Vol. 30, Toronto 2004.

Kiełbasiński A., Schwetlick H.: Numeryczna algebra liniowa. WNT, Warszawa 1992.

Kleinberg J.: Authoritative sources in a hyperlink environment. Journal of the ACM, Vol. 46, Issue 5,1999, s. 604-632. .

Kosala R., Blocked H.: Web Mining Research: A Survey. ACM SIGKDD Explorations Newsletter, Vol. 2, Issue 1, New York 2000, s. 1-15.

Manning Ch. D., Raghavan P., Schütze H.: An introduction to information retrieval. Cambridge University Press, 2008.

Markov Z., Larose D. T.: Eksploracja zasobów internetowych. PWN, Warszawa 2009.

Sayyadi, H., Getoor, L.: Ranking scientific articles by predicting their future PageRank. Society for Industrial and Applied Mathematics - 9th SIAM International Conference on Data Mining, 2009.