Optimisation of business processes using Petri nets and dynamic programming

Mateusz Wibig


This paper describes the idea of improving the simulation-based optimization of business processes using the dynamic programming. The Petri Nets scalability together with the concept of dynamic programming is used in attempt to reduce the number of necessary computations while applying the changes into the process.


genetic algorithm; Petri nets; expert system; dynamic programming; buissnes processes

Full Text:



Kochel P.: Solving logistic problems through simulation and evolution. Proceedings of the 7th International Symposium on Operational Research, Ljubljana 2003.

Wibig M.: Optimization of Projects Logistics Processes Using Petri Nets. Proceedings of XII System Modelling and Control Conference in Polish Journal of Environmental Studies, 2008.

Fieldsend J. E., Everson R. M. and Singh S.: Extensions to the Strength Pareto Evolutionary Algorithm. IEEE Transactions on Evolutionary Computation Vol. 2001,2001.

Zitzler E.: Evolutionary Algorithms for Multiobjective Optimization: Methods and Applications. Swiss Federal Institute of Technology, Zurich 1999.

Días A. H. F. and de Vasconcelos J. A.: Multiobjective Genetic Algorithms Applied to Solve Optimization Problems. IEEE Transactions on Magnetics, Vol. 38, No. 2,2002.

Carmen T. H., Leiserson C. E., Rivest R. L. and Stein C: Introduction to Algorithms (2 ed.). Mit Press and McGraw-Hill, 2002.

Bellman R. E.: Dynamic Programming. Dover Publications 2003.

Macias E. J. and de la Parte, M. M. P.: Simulation and optimization of logistic and production systems using discrete and continuous Petri nets. Simulation, Vol. 80,2005.

van Veldhuizen D. and Lamont G.: Multiobjective Evolutionary Algorithms: Analyzing the State-of-Art. Evolutionary Computation, Vol. 8,2000.

Fonseca C. M. and Fleming P. J.: An Overview of Evolutionary Algorithms in Multiobjective Optimisation. Evolutionary Computation, Vol. 3,1995.

DOI: http://dx.doi.org/10.21936/si2010_v31.n2B.402