System architecture and practical implementation of fuzzy data warehouse

Marek Miłek, Bożena Małysiak-Mrozek, Dariusz Mrozek

Abstract


Incorporation of fuzziness into data warehouse systems gives the opportunity to process data at higher level of abstraction and improves the analysis of imprecise data. It also gives the possibility to express business indicators in natural language using terms, like: high, low, about 10, almost all, etc., represented by appropriate mem¬ber¬ship functions. There are many technical, server-side problems that appear while developing the Fuzzy Data Warehouse with the use of existing database management systems (DBMSs). In the paper, we show architecture and practical aspects of the implementation of the Fuzzy Data Warehouse system based on our own personal experiences.

Keywords


data warehouse; fuzzy sets; fuzzy logic; decision support systems

Full Text:

PDF (Polski)

References


Miłek M., Małysiak-Mrozek B., Mrozek D.: Hurtownia danych rozmytych: podstawy teoretyczne i praktyczne aspekty użycia. Studia Informatica. Vol. 24, No. 2A(53),.s. 179-190, Gliwice 2010, (publikacja w bieżącym wydaniu).

Małysiak-Mrozek B., Mrozek D., Kozielski S.: Processing of Crisp and Fuzzy Measures in the Fuzzy Data Warehouse for Global Natural Resources. LNAI, Springer, Heidelberg 2010 (w publikacji).

Zadeh L.A.: Fuzzy sets. Information and Control. 1965,8 (3), s. 338-353.

Dubois D., Prade H.: Fundamentals of fuzzy sets. Kluwer Academic Publisher, 2000.

Bouchon-Meunier B., Yager R.R., Zadeh L.A.: Fuzzy logic and soft computing. Advances in Fuzzy Systems, Application and Theory Vol. 4, Singapore 1995.

Kimball R., Reeves L., Margy R., Thornthwaite W.: The Data Warehouse Lifecycle Toolkit. John Wiley & Sons, 1998.

Ponniah P.: Data Warehousing Fundamentals. A Comprehensive Guide for IT Professionals. John Wiley and Sons, 2001.

Małysiak-Mrozek B., Mrozek D., Kozielski S.: Data Grouping Process in Extended SQL Language Containing Fuzzy Elements. Advances in Intelligent and Soft Computing Vol. 59, Springer Verlag GmBH, 2009, s. 247-256.

MacQueen J.B.: Some Methods for classification and Analysis of Multivariate Observations. Proceedings of 5-th Berkeley Symposium on Mathematical Statistics and Probability, Berkeley, University of California Press, 1967, Vol. 1, s. 281-297.

Bose P., Pivert O.: SQLf: A Relational Database Language for Fuzzy Querying. IEEE Transactions on Fuzzy Systems. 1995, Vol. 3, No 1.

Kacprzyk J., Zadrozny S.: SQLf and FQUERY for Access. IFSA World Congress and 20th NAFIPS International Conference. 2001, s. 2464-2469.

Małysiak B.: Fuzzy Values in SQL Queries Submitted to Databases. Studia Informatica. Vol. 24, No. 2A(53), s. 179-190, Gliwice 2003.

Małysiak B., Mrozek D., Kozielski S.: Processing Fuzzy SQL Queries with Fiat, Context-Dependent and Multidimensional Membership Functions. Proc. of 4th IASTED International Conference on Computational Intelligence (CI 2005), Calgary, Canada. ACTA Press, 2005, s. 36-41.




DOI: http://dx.doi.org/10.21936/si2010_v31.n2A.387