Laboratory information management systems as a useful source of data to knowledge discovery using data mining methods

Marcin Chabior, Magdalena Tkacz

Abstract


The article describes Laboratory Information Management Systems (LIMS) as a useful source of data to obtain new knowledge by using data mining techniques. Based on the example, article shows that using a simple application user can retrieve data from the LIMS database and use them to explore the data using data mining methods. The article describes also the use of a particular group of data stored in the Genapha SLIMS system to construct a decision tree using the algorithm C4.5. The solution described in the article, shows the possibility to extend the functionality of the LIMS through knowledge discovery from data.

Keywords


lims; information management; laboratory systems; data mining; decision tree; algorithm C4.5

Full Text:

PDF (Polski)

References


Cowan D.: Informatics for the Clinical Laboratory. Springer, New York 2005.

Paszko C, Turner E.: Laboratory Information Management Systems, Second Edition, Revised and Expanded. Marcel Dekker, Inc., 2001.

Nakagawa A.S.: LIMS: Implementation and Management. The Royal Chemistry Society, 1994.

Rossum T.V., Tripp B., Daley D.: SLIMS - A user-friendly sample operations and inventory management system for genotyping labs. Bioinformatic Advance Access, 30 May 2010.

Hand D., Mannila H.. Smyth P.: Eksploracja danych. WNT, Warszawa 2005.

Larose D.T.: Odkrywanie wiedzy z danych. PWN, Warszawa 2006.

Wang J.T.L., Zaki M.J., Toivonen H.T.T., Shasha D.: Data Mining in Bioinfomiatics. Springer-Verlag, 2005.




DOI: http://dx.doi.org/10.21936/si2011_v32.n2B.318