Data mining and an efficiency of decision suppert systems

Agnieszka Nowak-Brzezińska

Abstract


The paper presents the results of the experiments in which an efficiency of decision support systems is analyzed. During the research it was noted that the most influenced on such efficiency is the method of representation of knowledge base. Following approaches are considered due to experiments: rules knowledge base with clusters of decision rules, rules knowledge base with partial decision rules and rules knowledge base with clusters of partial decision rules. The efficiency of choosing the best similarity measure is also analyzed.

Keywords


decision support system; cluster analysis; rules knowledge bases

Full Text:

PDF (Polski)

References


Kaufman L., Rousseeuw P.J.: Finding Groups in Data: An Introduction to Cluster Analysis. John Wiley Sons, New York 1990.

Koronacki J., Ćwik J. Statystyczne systemy uczące się. WNT, Warszawa 2005.

Nowak A., Wakulicz-Deja A., Bachliński S.Ś Optimization of Speech Recognition by Clustering of Phones. Fundamenta Informaticae 72, IOS Press, 2006, s. 283÷293.

Nowak A., Simiński R., Wakulicz-Deja A.: Towards modular representation of knowledge base. Springer-Verlag Berlin Heidelberg – Advances in Soft Computing, 2006, s. 421÷428.

Salton G.: Automatic Information Organization and Retreival. McGraw-Hill, New York 1975.

Jardine N., van Rijsbergen C. J.: The use of hierarchic clustering in information retrieval. Inforamtion Storage and Retrieval 7, s. 217÷241.

Nowak A., Zielosko B.: Inference Processes on Clustered Partial Decision Rules. Recent Advances In Intelligent Information Systems, Springer-Verlag, Advances In Soft Computing, Academic Publishing House EXIT, 2009, s. 579÷588.

Nowak A., Zielosko B.: Clustering of partial decision rules. Advanced In Intelligent and Soft Computing, Man-Machine Interactions, Springer-Verlag, 2009, s. 183÷190.

Nowak A.Ś Złożone bazy wiedzyŚ struktura i procesy wnioskowania. Rozprawa doktorska, Uniwersytet Śląski, Katowice 2009.

Nowak-Brzezińska A., Wakulicz-Deja A.Ś Wybór miary podobieństwa a efektywność grupowania reguł w złożonych bazach wiedzy. Studia Informatica, Wyd. Pol. Śląskiej, Vol. (31), No. 2A (89), 2010, s. 189÷202.

Moshkov M., Piliszczuk M., Zielosko B.: Partial covers, reducts and decision rules in rough sets. Theory and aaplications. Springer Verlag, Studies in Computational Intelligence, Vol. 145, 2008.

UC Irvine Machine Learning Repository: http://archive.ics.uci.edu/ml/.




DOI: http://dx.doi.org/10.21936/si2011_v32.n2A.275