Simulation of multiagent system for detection characteristics points in biomedical signals

Alina Momot, Michał Momot, Roman Seredyński

Abstract


The article describes a multi-agent system for the purpose of detecting the characteristic points in biomedical signals. In this system, there are many agents with their local knowledge bases, whose parameters are updated in the communication process with a single supervisory agent. The article also presents the virtual environment designed to simulate the work of the proposed system.

Keywords


collective intelligence; multi-agent system; biomedical signal

Full Text:

PDF (Polski)

References


Augustyniak P.: Discrete Nonlinear Control of the Diagnostic Quality in Distributed Telemedical Systems. Advances in Soft Computing, Vol. 69, 2010, s. 355÷366.

Franklin S., Graesser A.: Is it an Agent, or just a Program?: A Taxonomy for Autonomous Agents. LNCS, Vol. 1193, 1996, s. 21÷35.

Gruera P., Hilaire V., Koukama A., Cetnarowicz K.: A formal framework for multi-agent systems analysis and design. Expert Systems with Applications, Vol. 23, No. 4, 2002, s. 349÷355.

Jain L. C., Chen Z., Ichalkaranje N.(eds): Intelligent agents and their applications. Physica-Verlag, Heidelberg 2002.

Jennings N. R., Sycara K., Wooldridge M.: A roadmap of agent research and development. Journal of Autonomous Agents and Multi-Agent Systems, Vol. 1, 1998, s. 7÷38.

Klinge R.: The electrocardiogram, Thieme Medical Publishers, New York 1988.

Korsakas S., Vainoras A. i in.: Functional state evaluation system with distributed intellect for elderly and disabled population. Proceedings of Conference Biomedical Engineering, Kaunas, 2010, s. 30÷36.

Mark R., Moody G.: MIT-BIH Arrhythmia Database Directory. MIT, Cambridge, MA, 1988.

Momot A., Małysiak-Mrozek B. i in.: Improving Performance of Protein Structure Similarity Searching by Distributing Computations in Hierarchical Multi-Agent System. LNAI, Vol. 6421, 2010, s. 32Ń÷329.

Momot M., Momot A., Gacek A.: Granular Representation of Biomedical Signals Using Numerical Differentiation Methods. Journal of Medical Informatics and Technologies, Vol. 16, 2010, s. 43÷49.

Moody G. B., Mark R. G.: The MIT-BIH arrhythmia database on CD-ROM and software for use with it. Proceedings of Conference Computers in Cardiology, San Diego, CA 1990, s. 185-188.

Pan J., Tompkins W. J.: A Real-Time QRS Detection Algorithm, IEEE Trans. Biomed. Eng., Vol. 32, No. 3, 1985, s. 23Ń÷236.

Pedrycz W., Rai P.:A Multifaceted Perspective at Data Analysis: A Study in Collaborative Intelligent Agents. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, Vol. 38, No. 4, 2008, s. 1062÷1072.

Seredyński R., Momot M., Momot A.Ś System do projektowania protokołów sieci bezprzewodowych oraz ich symulacji. Studia Informatica, Vol. 31, No. 2B(90), 2010, s. 147-158.

Seredyński R., Momot M., Momot A.: Wspomaganie projektowania transmisji bezprzewodowej dla medycznych systemów czasu. Materiały konferencyjne XVI Krajowej Konferencji Naukowej Biocybernetyka i Inżynieria Biomedyczna, 2010 s. 216÷217.

Theodoropoulos G. K., Minson R., Ewald R., Lees M.: Simulation Engines for Multi-Agent Systems. [in:] Uhrmacher A., Weyns D. (eds.): Multi-agent systems: simulation and applications. CRC Press, Boca Raton 2009, s. 77÷105.

Tolk A., Uhrmacher A. M.: Agents: Agenthood, Agent Architectures, and Agent Taxonomies. [in:] Yilmaz L. et al. (eds.): Agent-Directed Simulation and Systems Engineering. Wiley-VCH, Weinheim 2009, s. 75÷109.

Weiss G. (eds.): Multiagent Systems: A Modern Approach to Distributed Artificial Intelligence. MIT Press, Cambridge 1999.




DOI: http://dx.doi.org/10.21936/si2011_v32.n2A.265