Application of binary similarity measures to analysis of genes represented in gene ontology domain

Michał Kozielski, Aleksandra Gruca

Abstract


The work presents application of four binary similarity measures to analysis of Gene Ontology data. The measures are analysed and compared with semantic measure calculating term and gene similarity. Two kinds of experiments performed on two gene datasets show that binary similarity measures are valuable and interesting methods for the considered application.

Keywords


similarity measures; binary similarity measures; Gene Ontology

Full Text:

PDF

References


Al Mubaid H., Nagar A.: Comparison of four similarity measures based on GO annotations for Gene Clustering. IEEE Symposium on Computers and Communications, ISCC 2008, p. 531-536.

Ankerst M., Breunig M., Kriegel H. P., Sander J.: OPTICS: ordering points to identify the clustering structure. SIGMOD Rec., Vol. 28, No. 2, 1999, p. 49-60.

Azuaje F., Wang H., Bodenreider O.: Ontology-driven similarity approaches to supporting gene functional assessment. Proc. Of The Eighth Annual Bio-Ontologies Meeting, 2005.

Doreian P., Batagelj V., Ferligoj A.: Generalized blockmodeling. Cambridge University Press, Cambridge 2005.

Eisen, M. B., Spellman, P. T., Brown, P. 0., Botstein, D.: Cluster analysis and display of genome-wide expression patterns. Proc. Natl. Acad. Sci. USA, Vol. 95, 1998, p. 14863-14868.

Gruca A., Kozielski M.: Correlation of genes similarity measures based on GO terms similarity and gene expression values. Advances in Intelligent and Soft Computing, Vol. 103, Springer, 2011, p. 137-144.

Gruca A., Kozielski M., Sikora M.: Fuzzy Clustering and Gene Ontology Based Decision Rules for Identification and Description of Gene Groups. AISC, Vol. 59, 2009, p. 141-149.

Han J., Kamber M.: Data Mining: Concepts and Techniques. Morgan Kaufmann Publishers, Academic Press, San Francisco 2001.

Iyer V. R., Eisen M. B., Ross D. T., Schuler G., Moore T., Lee J.C., Trent J. M., Staudt L. M., Hudson J., Boguski M. S., Lashkari D., Shalon D., Botstein D., Brown P. O.: The transcriptional program in the response of human fibroblasts to serum. Science, Vol. 283, 1999, p. 83-87.

Jiang J.J., Conrath D. W.: Semantic similarity based on corpus statistics and lexical ontology. Proc. on Int. Conference on Research in Computational Linguistics, 1997, p. 19-33.

Kozielski M., Gruca A.: Evaluation of Semantic Term and Gene Similarity Measures. LNCS, Vol. 6744, Springer, 2011, p. 406-412.

Kozielski M., Gruca A.: Visual comparison of clustering Gene Ontology data when different similarity measures are applied. Studia Informatica, Vol. 32, No 2A(96), Wydawnictwo Politechniki Śląskiej, Gliwice 2011, p. 169-180.

Pesquita C., Faria D., Falca A. O., Lord P., Couto F. M.: Semantic Similarity in Biomedical Ontologies. PLoS Comput. Biol., Vol. 5(7), 2009, p. 1-12.

Sikora M., Gruca A.: Induction and selection of the most interesting Gene Ontology based multiattribute rules for descriptions of gene groups. Pattern Recogn. Letters, Vol.32,2011, p. 258-269.

Sikora M., Gruca A.: Quality improvement of rules based gene groups descriptions using information about GO terms importance occurring in premises of determined rules. Int. Journal of Applied Mathematics & Computer Science, Vol. 20, No. 3, 2010, p. 555-570.

Wang H., Azuaje F., Bodenreider O., Dopazo J.: Gene expression correlation and gene ontology-based similarity: an assessment of quantitative relationships. Proc. of the 2004 IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology CIBCB '04, 2004, p. 25-31.




DOI: http://dx.doi.org/10.21936/si2012_v33.n2A.165