Optimization of inhibitory decision rules relative to length

Fawaz Alsolami, Igor Chikalov, Mikhail Moshkov, Beata Zielosko

Abstract


The paper is devoted to the study of an algorithm for optimization of inhibitory rules relative to the length. Such rules on the right-hand side have a relation "attribute ≠ value". The considered algorithm is based on an extension of dynamic programming. After the procedure of optimization relative to length, we obtain a graph Λ(T) which describes all nonredundant inhibitory rules with minimum length.

Keywords


inhibitory decision rules; length; dynamic programming algorithm

Full Text:

PDF

References


Amin T., Chikalov I., Moshkov M., Zielosko B.: Dynamic programming algorithm for optimization of ß-decision rules, [in:] Szczuka M., Czaja L., Skowron A., Kacprzak M. (eds.): 20th International Workshop Concurrency, Specification and Programming CS&P 2011, Białystok University of Technology, Pułtusk, Poland 2011, p. 10-16.

Amin T., Chikalov I., Moshkov M., Zielosko B.: Dynamic programming approach for exact decision rule optimization, [in:] Skowron A., Suraj Z. (eds.): Special volume in Series Intelligent Systems Reference Library dedicated to the memory of Professor Zdzisław Pawlak, Springer, 2011.

Amin T., Chikalov I., Moshkov M., Zielosko B.: Dynamic programming approach to optimization of approximate decision rules. Information Sciences, Elsevier (submitted).

Delimata P., Moshkov M., Skowron A., Suraj Z.: Two families of classification algorithms, [in:] An A., Stefanowski J., Ramanna S., Butz C. J., Pedrycz W., Wang G. (eds.): RSFDGrC 2007, LNCS (LNAI), Vol. 4482. Springer, Heidelberg 2007, p. 297-304.

Delimata P., Moshkov M., Skowron A., Suraj Z.: Comparison of lazy classification algorithms based on deterministic and inhibitory decision rules, [in:] Wang G., Li T., Grzymała-Busse J. W., Miao D., Skowron A., Yao Y. (eds.): RSKT2008, LNCS (LNAI), Vol. 5009. Springer, Heidelberg 2008, p. 55-62.

Delimata P., Moshkov M., Skowron A., Suraj Z.: Lazy classification algorithms based on deterministic and inhibitory rules, [in:] Magdalena L., Ojeda-Aciego M., Verdegay J. L. (eds.): IPMU'08, Torremolinos (Malaga), Spain, June 22-27, 2008, p. 1773-1778.

Delimata P., Moshkov M., Skowron A., Suraj Z.: Inhibitory Rules in Data Analysis: A Rough Set Approach. Computational Intelligence, Vol. 163, Springer, Heidelberg 2009.

Frank A., Asuncion A.: UCI ML Repository, http://archive.ics.uci.edu/ml.

Rissanen J.: Modeling by shortest data description. Automatica, Vol. 14, 1978, p. 465-471.

Skowron A., Suraj Z.: Rough sets and concurrency. Bulletin of the Polish Academy of Sciences, Vol. 41(3), 1993, p. 237-254.

Suraj Z.: Some remarks on extensions and restrictions of information systems, [in:] Ziarko W., Yao Y. Y. (eds.): RSCTC 2000, LNCS (LNAI), Vol. 2005, Springer, Heidelberg 2001, p. 204-211.

Zielosko B., Moshkov M., Chikalov I.: Optimization of decision rules based on methods of dynamic programming. Vestnik of Lobachevsky State University of Nizhni Novgorod 6, 2010, p. 195-200 (in Russian).




DOI: http://dx.doi.org/10.21936/si2012_v33.n2A.155