
STUDIA INFORMATICA 2012 

Volume 33 Number 2A (105) 

Fawaz ALSOLAMI, Igor CHIKALOV, Mikhail MOSHKOV  

KAUST, MCSE Division 

Beata ZIELOSKO 

KAUST, MCSE Division 

University of Silesia, Institute of Computer Science 

OPTIMIZATION OF INHIBITORY DECISION RULES RELATIVE 

TO LENGTH  

Summary. The paper is devoted to the study of an algorithm for optimization of 

inhibitory rules relative to the length. Such rules on the right-hand side have a relation 

"attribute  value". 

The considered algorithm is based on an extension of dynamic programming. Af-

ter the procedure of optimization relative to length, we obtain a graph (T) which de-

scribes all nonredundant inhibitory rules with minimum length. 
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OPTYMALIZACJA WZBRANIAJĄCYCH REGUŁ DECYZYJNYCH 

WZGLĘDEM DŁUGOŚCI 

Streszczenie. W artykule przedstawiono algorytm dla optymalizacji reguł wzbra-

niających względem długości. Reguły te w prawej części mają relację  

„atrybut  wartość”. 

Algorytm opiera się na idei dynamicznego programowania. Dla danej tablicy de-

cyzyjnyej T konstruowany jest skierowany graf acykliczny (T). W wyniku procedury 

optymalizacji względem długości, na podstawie grafu (T) można opisać cały zbiór 

nienadmiarowych reguł wzbraniających o minimlanej długości. 

Słowa kluczowe: wzbraniające reguły decyzyjne, długość, algorytm dynamiczne-

go programowania 
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1. Introduction 

The paper is devoted to the study of an algorithm for inhibitory rule optimization based on 

extensions of dynamic programming. In contrast with usual rules that have on the right-hand 

side a relation “attribute = value”, inhibitory rules have a relation “attribute  value” on the 

right hand side. 

It was shown in [10, 11] that, for some information systems, usual rules cannot describe 

the whole information contained in the system. However, inhibitory rules describe the whole 

information for every information system [7]. Classifiers based on inhibitory rules have often 

better accuracy than classifiers based on usual rules [4, 5, 6]. 

Greedy algorithms for inhibitory rule construction were studied in [7]. In this paper, we 

consider an algorithm for optimization of inhibitory rules relative to the length which is based 

on an extension of dynamic programming. The choice of length is connected with the Mini-

mum Description Length principle [9]. Similar approach to usual decision rule optimization 

was studied in [1, 2, 3, 12]. We consider also results of experiments with some decision 

tables from UCI ML Repository [8].  

The paper consists of six sections. In Section 2, we discuss main notions including the no-

tion of nonredundant inhibitory rule. In Section 3, a directed acyclic graph is considered 

which allows us to describe the whole set of nonredundant inhibitory rules for each row of 

a decision table. Section 4 contains the descriptions of a procedure of optimization relative to 

the length. Section 5 contains results of experiments and Section 6 – conclusions. 

2. Nonredundant Inhibitory Rules 

First, we consider definitions of notions corresponding to decision tables and inhibitory 

rules. A decision table T is a rectangular table with n columns labeled with conditional 

attributes f1,…,fn. Rows of this table are filled with nonnegative integers which are interpreted 

as values of conditional attributes. Rows of T are pairwise different and each row is labeled 

with a nonnegative integer (decision) which is interpreted as a value of the decision attribute 

d. We denote by D(T) the set of decisions attached to rows of the table T. We denote by N(T) 

the number of rows in the table T.  

A table obtained from T by the removal of some rows is called a subtable of the table T.  

A subtable T* of the table T is called reduced if |D(T*)| < |D(T)|, and unreduced otherwise 

when |D(T*)| = |D(T)|.  
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Let T be nonempty, fi(1),…,fi(m)  {f1,…,fn} and a1,…,am be nonnegative integers. We de-

note by T(fi(1),a1)…(fi(m),am) the subtable of the table T which contains only rows that have 

numbers a1,…,am at the intersection with columns fi(1),…,fi(m). Such nonempty subtables (in-

cluding the table T) are called separable subtables of T.  

We denote by E(T) the set of attributes from {f1,…,fn} which are not constant on T. For 

any fi  E(T), we denote by E(T,fi) the set of values of the attribute fi in T.  

The expression  

fi(1) = a1 ∧ … ∧ fi(m) = am → d  ≠ k (1) 

is called an inhibitory rule over T if fi(1),…,fi(m)  {f1,…,fn}, a1,…am are nonnegative integers, 

and k  D(T). It is possible that m = 0. In this case (1) is equal to the rule  

→ d ≠ k. (2) 

Let Θ be a subtable of T and r=(b1,…,bn) be a row of Θ. We will say that the rule (1) is 

realizable for r, if a1=bi(1),…,am=bi(m). The rule (2) is realizable for any row from Θ.  

We will say that the rule (1) is true for Θ if each row of Θ for which the rule (1) is realiz-

able has the decision attached to it that is different from k. The rule (2) is true for Θ if and 

only if each row of Θ is labeled with the decision different from k. If the rule (1) is an inhibi-

tory rule over T which is true for Θ and realizable for r, we will say that (1) is an inhibitory 

rule for Θ and r over T.  

We will say that the rule (1) with m > 0 is a nonredundant inhibitory rule for Θ and r over 

T if (1) is an inhibitory rule for Θ and r over T and the following conditions hold:  

(i) fi(1)  E(Θ), and if m > 1 then fi(j)  E(Θ(fi(1),a1)…(fi(j−1),aj−1)) for j=2,…,m; 

(ii) if m=1 then Θ is unreduced, and if m>1 then the subtable 

Θ*=Θ(fi(1),a1)…(fi(m−1),am−1) is unreduced. 

The rule (2) is a nonredundant inhibitory rule for Θ and r over T if (2) is an inhibitory rule for 

Θ and r over T, i.e., if each row of Θ is labeled with a decision different from k and k ∈ D(T). 

Lemma 1. Let Θ be an unreduced subtable of T with fi(1) ∈ E(Θ), a1 ∈ E(Θ,fi(1)), and r be 

a row of the table Θ*= Θ(fi(1),a1). Then the rule (1) with m ≥ 1 is a nonredundant inhibitory 

rule for Θ and r over T if and only if the rule 

fi(2) = a2 ∧ … ∧ fi(m) = am → d ≠ k (3) 

is a nonredundant inhibitory rule for Θ* and r over T (if m=1 then (3) is equal to → d ≠ k). 

Proof. It is clear that (1) is an inhibitory rule for Θ and r over T if and only if (3) is an in-

hibitory rule for Θ* and r over T.  

It is easy to show that the statement of lemma holds if m = 1. Let now m > 1.  

Let (1) be a nonredundant inhibitory rule for Θ and r over T. Then from (i) it follows that 

fi(2) ∈ E(Θ*) and if m > 2 then, for j=3,…,m, fi(j) ∈ E(Θ*(fi(2),a2)…(fi(j−1),aj−1)). From (ii) it 
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follows that Θ* is unreduced if m=2, and Θ*(fi(2),a1)…(fi(m−1),am−1) is unreduced if m > 2. 

Therefore (3) is a nonredundant inhibitory rule for Θ* and r over T.  

Let (3) be a nonredundant inhibitory rule for Θ* and r over T. Then, for j=2,…,m, fi(j) ∈ 

E(Θ(fi(1),a1)…(fi(j−1),aj−1)). Also we know that fi(1) ∈ E(Θ). Therefore the condition (i) holds. 

Since (3) is a nonredundant inhibitory rule for Θ* and r over T, we have Θ(fi(1),a1) is unre-

duced if m=2 and Θ(fi(1),a1)…(fi(m),am−1) is unreduced if m > 2. Therefore the condition (ii) 

holds, and (1) is a nonredundant inhibitory rule for Θ and r over T.  

Let Θ be a subtable of T, τ be a nonredundant rule over T, and τ be equal to (1).  

The number m of conditions on the left-hand side of τ is called the length of this rule and 

is denoted by l(τ). The length of inhibitory rule (2) is equal to 0. 

Proposition 1. Let T be a nonempty decision table, Θ be a nonempty subtable of T, r be 

a row of Θ, and τ be an inhibitory rule for Θ and r over T which is not a nonredundant inhi-

bitory rule for Θ and r over T. Then by removal of some conditions from the left-hand side of 

τ and changing of the right-hand side of τ we can obtain a nonredundant inhibitory rule irr(τ) 

for Θ and r over T such that l(irr(τ)) ≤ l(τ). 

Proof. Let τ be equal to (1) and p ∈ D(T)\D(Θ). One can show that the rule → d ≠ p is 

a nonredundant inhibitory rule for Θ and r over T. We denote this rule by irr(τ). It is clear that 

l(irr(τ)) ≤ l(τ). Let now Θ be unreduced. 

Let t be the minimum number from {1,…,m} such that Θ*=Θ(fi(1),a1)…(fi(t),at) is reduced. 

If t < m then we remove from τ the conditions fi(t+1)=at+1,…,fi(m)=am and instead of d ≠ k we 

will have d ≠ q where q ∈ D(T)\D(Θ*). We denote the obtained rule by τ*. It is clear that τ* is 

an inhibitory rule for Θ and r over T. If fi(1)  E(Θ) then we remove the condition fi(1)=a1 from 

τ*. For any j ∈ {2,…,t}, if fi(j)  E(Θ(fi(1),a1)…(fi(j−1),aj−1)) then we remove the condition 

fi(j)=aj from the left-hand side of the rule τ*.  

One can show that the obtained rule is a nonredundant inhibitory rule for Θ and r over T. 

We denote this rule by irr(τ). It is clear that l(τ) ≥ l(irr(τ)).   

3. Directed Acyclic Graph Λ(T) 

Now, we consider an algorithm that constructs a directed acyclic graph Λ(T) which will 

be used to describe the set of nonredundant inhibitory rules for T and for each row r of T over 

T. Nodes of the graph are some separable subtables of the table T. During each step, the algo-

rithm processes one node and marks it with the symbol *. At the first step, the algorithm con-

structs a graph containing a single node T which is not marked with *.  
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Let us assume that the algorithm has already performed p steps. We describe now the step 

(p+1). If all nodes are marked with the symbol * as processed, the algorithm finishes its work 

and presents the resulting graph as Λ(T). Otherwise, choose a node (table) Θ, which has not 

been processed yet. If Θ is reduced, then mark Θ with the symbol * and go to the step (p+2). 

Otherwise, for each fi ∈ E(Θ), draw a bundle of edges from the node Θ. Let 

E(Θ,fi)={b1,…,bt}. Then draw t edges from Θ and label these edges with pairs (fi,b1),…,(fi,bt) 

respectively. These edges enter to nodes Θ(fi,b1),…,Θ(fi,bt). If some of nodes 

Θ(fi,b1),…,Θ(fi,bt) are absent in the graph then add these nodes to the graph. We label each 

row r of Θ with the set of attributes EΛ(T)(Θ,r)=E(Θ) (this set can be changed during a proce-

dure of optimization). Mark the node Θ with the symbol * and proceed to the step (p+2).  

The graph Λ(T) is a directed acyclic graph. A node of this graph will be called terminal if 

there are no edges leaving this node. Note that a node Θ of Λ(T) is terminal if and only if Θ is 

reduced.  

Later, we will describe a procedure of optimization of the graph Λ(T) relative to the 

length. As a result we will obtain a graph  with the same sets of nodes and edges as in Λ(T). 

The only difference is that any row r of each unreduced table Θ from  is labeled with 

a nonempty set of attributes E (Θ,r)  E(Θ).  

Let G be the graph Λ(T) or a graph  obtained from Λ(T) by the procedure of optimiza-

tion. 

Now for each node Θ of G and for each row r of Θ we describe a set of inhibitory rules 

RulG(Θ,r) over T. Let Θ be a terminal node of G: Θ is a reduced subtable. Then  

RulG(Θ,r)={→ d ≠ k: k ∈ D(T)\D(Θ)}. 

Let now Θ be a nonterminal node of G such that for each child Θ* of Θ and for each row 

r* of Θ* the set of rules RulG(Θ*,r*) is already defined. Let r=(b1,…,bn) be a row of Θ. For 

any fi ∈ EG(Θ,r), we define the set of rules RulG(Θ,r,fi) as follows:  

RulG(Θ,r,fi)={fi=biα→ d ≠ k: α→ d ≠ k ∈ RulG(Θ(fi,bi),r)} 

Then 


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Theorem 1. For any node Θ of Λ(T) and for any row r of Θ, the set RulΛ(T)(Θ,r) is equal 

to the set of all nonredundant inhibitory rules for Θ and r over T. 

Proof. We will prove this statement by induction on nodes in Λ(T). Let Θ be a terminal 

node of Λ(T). One can show that the rules → d ≠ k where k ∈ D(T)\D(Θ) are the only rules 

which are nonredundant inhibitory rules for Θ and r over T. Therefore the set RulΛ(T)(Θ,r) is 

equal to the set of all nonredundant inhibitory rules for Θ and r over T.  
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Let Θ be a nonterminal node of Λ(T) and for each child of Θ the statement of theorem 

hold. Let r=(b1,…,bn) be a row of Θ. Using Lemma 1 we obtain that RulΛ(T)(Θ,r) contains 

only nonredundant inhibitory rules for Θ and r over T.  

Let τ be a nonredundant inhibitory rule for Θ and r over T. Since Θ is unreduced, the left-

hand side of τ is nonempty. Therefore τ can be represented in the form fi=bi∧α→ d ≠ k, where 

fi ∈ E(Θ). Using Lemma 1 we obtain α→ d ≠ k is a nonredundant inhibitory rule for Θ(fi,bi) 

and r over T. Based on inductive hypothesis we obtain that the rule α→ d ≠ k belongs to the 

set RulΛ(T)(Θ(fi,bi),r). Therefore τ ∈ RulΛ(T)(Θ,r).  

Let us consider a decision table T0 depicted in Fig. 1.  

 
Fig. 1. Decision table T0 

Rys. 1. Tabela decyzyjna T0 

 
We denote by G0 the graph Λ(T0) which is depicted in Fig. 2. For each node (subtable) Θ 

of G0 which contains the last row r4 of the table T0 we add to Θ the set of all nonredundant 

inhibitory rules for Θ and r4 over T0. 

 

Fig. 2. Graph G0=Λ(T0) 

Rys. 2. Graf G0=Λ(T0) 
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4. Procedure of Optimization Relative to Length 

Let now G = Λ(T). We consider the procedure of optimization of the graph G relative to 

the length l. For each node Θ in the graph G, this procedure assigns to each row r of Θ the set 

RulG
l
(Θ,r) of inhibitory rules with minimum length from RulG(Θ,r) and the number 

OptG
l
(Θ,r) – the minimum length of an inhibitory rule from RulG(Θ,r). 

The idea of the procedure is simple. It is clear that for each terminal node Θ of G and for 

each row r of Θ the following equalities hold:  

RulG
l
(Θ,r) = RulG(Θ,r) = {→ d ≠ k: k ∈ D(T)\D(Θ)}, 

and 

OptG
l
(Θ,r) = 0. 

 

Let Θ be a nonterminal node, and r=(b1,…,bn) be a row of Θ. We know that 
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and, for fi ∈ EG(Θ,r),  

RulG(Θ,r,fi) = {fi=bi ∧ α→ d ≠ k: α→ d ≠ k ∈ RulG(Θ(fi,bi),r)}. 

For fi ∈ EG(Θ,r), we denote by RulG
l
(Θ,r,fi) the set of all rules with the minimum length 

from RulG(Θ,r,fi) and by OptG
l
(Θ,r,fi) – the minimum length of an inhibitory rule from 

RulG(Θ,r,fi). 

One can show that 

RulG
l
(Θ,r,fi) = {fi=bi ∧ α→ d ≠ k: α→ d ≠ k ∈ RulG

l
(Θ(fi,bi),r)}, 

OptG
l
(Θ,r,fi) = OptG

l
(Θ(fi,bi),r) + 1, 

and  

OptG
l
(Θ,r) = min {OptG

l
(Θ,r,fi): fi ∈ EG(Θ,r)} 

=min{OptG
l
(Θ(fi,bi),r) + 1: fi ∈ EG(Θ,r)}. 

It is easy to see also that  
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We now describe the procedure of optimization of the graph G relative to the length l. We 

will move from the terminal nodes of the graph G which are reduced subtables to the node T. 

We will assign to each row r of each table Θ the number OptG
l
(Θ,r) which is the minimum 

length of an inhibitory rule from RulG(Θ,r) and we will change the set EG(Θ,r) attached to the 

row r in the nonterminal table Θ. We denote the obtained graph by G(l). 

Let Θ be a terminal node of G. Then we assign to each row r of Θ the number 

OptG
l
(Θ,r) = 0.  
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Let Θ be a nonterminal node and all children of Θ have already been treated. Let 

r=(b1,…,bn) be a row of Θ. We assign the number  

OptG
l
(Θ,r) = min{OptG

l
(Θ(fi,bi),r) + 1:  fi ∈ EG(Θ,r)} 

to the row r in the table Θ and we set  

EG(l)(Θ,r) = {fi:  fi ∈ EG(Θ,r), OptG
l
(Θ(fi,bi),r) + 1 = OptG

l
(Θ,r)}. 

From the reasoning before the description of the procedure of optimization relative to the 

length the next statement follows. 

Theorem 2. For each node Θ of the graph G(l) and for each row r of Θ the set RulG(l)(Θ,r) is 

equal to the set RulG
l
(Θ,r) of all rules with the minimum length from the set RulG(Θ,r).  

Fig. 3 presents the directed acyclic graph G0(l) obtained from the graph G0 (see Fig. 2) by 

the procedure of optimization relative to the length. For each node (subtable) Θ of G0(l) 

which contains the last row r4 of the table T0 we add to Θ the set of all nonredundant inhibito-

ry rules for Θ and r4 over T0 with minimum length. 

 

Fig. 3. Graph G0(l) 

Rys. 3. Graf G0(l) 

5. Experimental Results 

We considered a number of decision tables from UCI Machine Learning Repository [8]. 

Some decision tables contain conditional attributes that take unique value for each row. Such 

attributes were removed. In some tables there were equal rows with, possibly, different deci-

sions. In this case each group of identical rows was replaced with a single row from the group 
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with the most common decision for this group. In some tables there were missing values. 

Each such value was replaced with the most common value of the corresponding attribute.  

For each such decision table T we constructed the directed acyclic graph Λ(T) and applied 

to it the procedure of optimization relative to the length. Average length of obtained rules 

(among all rows of T) can be found in Table 1 (column “DP”). 

We used also a greedy algorithm to construct inhibitory rules.  For a given row r of a de-

cision table T, we form the set U(T,r) of all rows of T with decisions different from the deci-

sion attached to r. During each step we choose an attribute that separates from r the maxi-

mum number of rows from U(T,r) not yet separated. We will stop when lose at least one deci-

sion from the set D(T). Average length of obtained rules (among all rows of T) can be found 

in Table 1 (column “Greedy”). 

Table 1 

Length and coverage of inhibitory rules 

 Decision table Rows Attr DP Greedy 

adult-stretch 16 4 1.250 1.250 

balance-scale 625 4 2.672 2.704 

breast-cancer 266 9 2.665 2.726 

cars 1727 6 1.047 1.459 

hayes-roth-data 69 4 1.667 1.667 

lymphography 148 18 1.000 1.135 

monks-1-test 432 6 2.250 2.250 

monks-1-train 124 6 2.266 2.476 

monks-2-test 432 6 4.523 4.861 

monks-2-train 169 6 3.497 3.692 

monks-3-test 432 6 1.750 1.750 

monks-3-train 122 6 2.311 2.336 

nursery 12960 8 1.000 1.129 

shuttle-landing 15 6 1.400 1.400 

 
  

  Based on presented results we can see that for nine from 14 decision tables the average 

length of optimal rules is less than the average length of rules constructed by the greedy algo-

rithm. 
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6. Conclusions 

In the paper, we considered algorithm for exact inhibitory rule optimization relative to the 

length which is based on an extension of dynamic programming. Further, we will study ap-

proximate inhibitory rules also.  
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Omówienie  

W artykule został przedstawiony algorytm dla optymalizacji wzbraniających reguł decy-

zyjnych względem długości. W porównaniu do zwykłych reguł decyzyjnych, które w prawej 

części relację „atrybut = wartość”, reguły wzbraniające w prawej części mają relację „atrybut 

 wartość”. 

Przedstawiony algorytm opiera się na ideii dynamicznego programowania. Dla danej ta-

blicy decyzyjnyej T konstruowany jest skierowany graf acykliczny (T). Węzłami grafu są 

podtabele tabeli T, opisane przez system równań „atrybut = wartość”. Podział tabeli na podta-

bele kończy się, kiedy podtabela ma mniej różnych wartości decyzji niż tabela T. Na podsta-

wie grafu (T) można opisać cały zbiór tzw. nienadmiarowych reguł wzbraniających. W wy-

niku optymalizacji wzgledem długości uzyskujemy zmieniony graf (T), który pozwala opi-

sać cały zbiór nienadmiarowych reguł wzbraniających o minimalnej długości.  

Wyniki eksperymentów przedstawiają średnią długość reguł, opisanych na podstawie al-

gorytmu dynamicznego programowania, oraz średnią długość reguł konstruowanych za po-

mocą algorytmu zachłannego. 
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